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ABSTRACT 

We prove (Baire) category theorems for ergodic multiplier properties stronger 
than weak mixing, and weaker than mild mixing. 

§1. Introduction 

In this paper we "identify the Baire categories" of some types of ergodic 

multiplier properties lying between weak mixing and mild mixing. 

Let (X, ~, m) denote the unit interval equipped with Lebesgue measure and 

let S :X--> X be a measure preserving transformation. Then (by the weak mixing 

theorem [5]) S is weakly mixing if and only if S × T is ergodic for every ergodic 

measure preserving transformation T of X. This means that weak mixing is an 

ergodic multiplier property in the sense which we proceed to define. 

Denote by G, the group of non-singular invertible transformations of X, G e 

the collection of ergodic ones and G,, the collection of invertible transforma- 

tions of X preserving m. We think of an ergodic multiplier property (in G,,) as 

the property of belonging to an ergodic multiplier set (in Gin) which is a set of the 

form 

E(P) = {S E Gm: S x T is ergodic for every T E P} 

where P C G. Evidently if E(P) is non-empty, P C G" and if P C Q then 

E(P) D__ E(Q).  We see that indeed weak mixing is an ergodic multiplier property 

in this sense, the collection of weak mixing transformations in G,. being 

E(Gm A G~). 
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P. Halmos showed (cf. [4] and [5]) that the collection of weakly mixing 

transformations in Gm is residual in Gm (endowed with the weak topology). 
Recall from [3] that S E Gm is called rigid if there is a sequence n. ---~oo such 

that m ( A  A S ".A)---~._~O for every A E ~,  and that S ~ G,, is called mildly 

mixing if S has no non-trivial rigid factor. It is proved in [3] that the collection of 

mildly mixing transformations in Gm is E ( G ' ) .  
It follows from results of Katok and Stepin that the collection of rigid 

transformations is residual in G,.. Thus E(G' ) ,  the collection of mildly mixing 

transformations, is meagre in Gin. 

It is known (see §2) that if S E G,~ n G" and T E G" then S × T is ergodic if 

and only if the eigenvalues of T are a null-set for the spectral measure of S. 

Now S E G,, is weakly mixing if and only if o', (the spectral measure of S) is 

non-atomic, and so for S weakly mixing, S × T is ergodic for every T E G e with 

a countable eigenvalue group. 

Set G ' ( N 0 ) = { T E  Ge:T ' s  eigenvalue group is countable}. We see that by 

Halmos'  result: 

E (G ~ (No)) is residual in Gin. 

In general, the eigenvalues of T @ G e form a Borel subset of the circle witl 
Lebesgue measure zero. However  ([2]), for every p( t )> 0, p( t )  ~ 0, p(t)/t 1̀  oo 
as t ~ 0, there is a T E G" whose eigenvalues have positive p-Hausdorff  
measure. For p as above, let 

G" (p) = { T E G" : T's eigenvalues have p-Hausdorff measure zero}. 

Our first result (Theorem 1) is that for any such p, E(Ge(p)) is meagre in Gr,. 

This has the interpretation that "'in general" (see [5]) a transformation has small 
spectrum - -  its spectral measure charges small eigenvalue groups. 

Let c, ~ 0 as n 1' 0% XT=~ c, = ~. Recall from [8] that T E G" is c,-recurrent if 

c.f " T" 
din. T_______~" 

n = l  dm = oo a . e .  

for every non-negative measurable function f with f×fdm > 0 (for a relationship 

between c.-recurrence and size of eigenvalue groups, see [2]). For c = 

(q ,c2 , . . . )  where c, ~ O, E~=lC. =oo; let G ' ( c )  = { T E  G" : T  is c.-recurrent}. 

Theorem 2 says that for any such e (however small c.), E (G" (e)) is meagre in 
G.. 

We finish the paper with a class of residual ergodic multiplier properties. 
Suppose a(n)---~oo, a(n)/n---~O as n---~oo. Let 
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. 1 n 1 

Ge({a(n)})  = T ~ G e :hm---7--= ~ m ( A  n T " B ) > 0  for every A , B  E ~1; 
. ~ a ~ n  )~=o 

m ( A ) , m ( B ) > O } .  

(It is not hard to show, using the Chacon-Ornstein theorem, that every T E G e 

is in some G~({a(n)}), and also, that if T E  Ge({a(n)}),  c, ~, 0 as n 1' ~ and 

2~=~(c, - G+~)a(n) = ~ then T is G-recurrent.) 

Theorem 3 states that for every a(n) - - -~ ,  a(n)/n---~O as n---~,  

E (G e ({a (n)})) is residual. 

The author would like to thank M. Keane for some helpful discussions. 

§2. The scalar spectral theorem and eigenvalues 

As promised in the introduction, we review some well known results on 

eigenvalues of non-singular transformations and spectral measures of measure 

preserving transformations. Firstly the 

SCALAR SPECTRAL THEOREM. Let S E G,,, then there exists a finite positive 

measure 6s on [0, 1) and a continuous, symmetric sesquilinear map 

hs : L2(m) x L 2(m)----> L ~(6-s). 

such that 

(a) fx[~, " S"dm = S~e'-~'"Shs([, g)(s)dd~s(S) ]:or every n E Z, [, g E L2(m),  

(b) hs(]:,]:)>=O ]:or every ]: E L2(m) and ]:or every h E L~(6"s), h >-_0 there is a 

g E L2(m)  with hs(g, g) = h. 

This result, in which ]:---~]:. S may be replaced by any unitary operator on the 

separable Hilbert space L2(m),  is proved using G. Herglotz's theorem charac- 
terising positive definite sequences to show that 

fx f f  . S"dm = fo' e2="'dm(s ) 

for some positive measure /x t on [0,1), and then using standard (separable) 

Hilbert space techniques to "put all the ~t 's together". 

Now, since /~x =60 we always have that ~s({0})>0. The measure O-s = 

6"s - 6s({0})3o is called the scalar spectral measure of S, and S's spectral type is 

the measure class of O-s (that is {/x :/x -O's}). 

Secondly, the 
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EIGENVALUE THEOREM. Suppose T E  G e. Let e (T)={s  E [ 0 , 1 ) : f : X - - ~ T  

measurable with f .  T = e2~"f mod m}. Then e IT) is a Borel subgroup of [0,1) 

and there is a jointly measureable function (Lebesgue x Borel) r / : X  × e(T)--+T 

such that ~l(Tx, s) = e2~%l(x,s) for every s E e(T), x E X, where m(X~) = 0. 

An indication of how to prove this is given in [2]. 

It is now standard to prove the 

MULTIPLIER THEOREM. If S E Gem and T E G ~ then S x T is ergodic if and 
only if trs(e(T)) = O. 

Since any bounded invariant function for S x T defines a measurable map 

F:X--~L2(m) with F(Tx).  S = F(x),  whence, for every g E L2(m), 

hs(F(Tx),g)(s) = e2"hs(F(x),g)(s), ors-a.e. 

and, if txi(e(T)) = 1 (f E L2(m)), one can use the function r/ in the eigenvalue 

theorem, and standard techniques to get F :  X--~ sp{f. S"},zz with F(Tx) .  S = 
F(x). (Here, sp{f. S"},~z denotes the closed linear span of {f. S"},~z in L2.) 

§3. Towers over the adding machine 

In this section we recall from [1], [2] some results on dyadic towers over the 

adding machine, whose eigenvalue groups and recurrence properties are con- 

trollable. 
Let ~ = {13,1} N, M be the o--field generated by cylinder sets, and P = (½,½)N __ 

Bernoulli measure. 
Suppose x = (£1(x), s~2(x),...) E ~ ;  let l(x) = inf{n ->_ 1: £.(x) = 0}, then x = 

(1,.. . ,  1,0, ~,+,, ~,+2,...). 
The adding machine is defined by ~-x = (0 . . . . .  0,1, ~:~+1 , . . . ) .  It is easy to see that 

(~, ~t,P, ¢) is an ergodic measure preserving transformation. 

Let 3 , (n )EN for n > 1. The dyadic height function with heights y (n )  is 

6 (x )  = T(l(x)) and the dyadic tower over the adding machine with height 

function 6 is defined on 

Y ={(x,n):x ~ f l ,  N ~  n =< ~b(x)), 

n = l  n = l  

by 
T ( x , n ) = {  (x ,n+l ) '  ~b(x)--> n + 1' 

(wx, 1), th(x) = n. 
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Then ([7]) (Y, q¢,/z, T) is a conservative, ergodic, measure-preserving transforma- 

tion, and ([6]),/~(Y) = fn4)dP. Since (Y, re,/x) is separable and o--finite, we may 

consider T as an element of GL 

The towers over the adding machine used in this article are constructed by: 

Choosing K C_ N, K = {k(u)}~=o, where k(u) < k(u + 1), and 

setting 3,(1) = 2 k~°~ and, for n => 2, 

n - 2  

3,(n) = 2 k(n-~ - ~--0 2~(~ E N. 

If (Y, ~, Ix, T) is constructed from K C N then 

T is boundedly rationally ergodic with asymptotic type equivalent to 2 I~nt~''°g~"~l 

and, in particular, 
n-1 

~k~,=o tx(a f'l T-kB)/21KnII"°~"II>O 

for every A , B  E ~, / x (A) , / x (B )> 0 .  (See [1].) 
e !< oo then s E e(T). (See [1], [3].) I f s  El0 ,1)  and E ~ = , l l -  2,~,z~,-,, 

If  s ~ e(T) then 2,~,.,, e ~ , _ ~  1. (See [2].) 

§4. In general, a transformation has small spectrum 

We begin with the 

MAIN LEMMA. Suppose that nk,mk E N  and that nk+l > nk + mk + k. For 
L C N, [L I = % let K(L)  = I..Jk~L[nk, n~ + ink] f-I N, and TL denote the dyadic 
tower over the adding machine constructed in §3 using K(L  ), then E({TL : L C_ 
N, I L l =  oq) is meagre in G,.. 

PROOF. Recall that X is the unit interval [0,1). Let ~ denote the dyadic sets 

in X, that is, all finite unions of dyadic intervals. Then @ is a countable algebra, 

and m-dense in ~.  A metric for the weak topology on G,, is given by 

d(SI'S2)= 2 ~-;(m(SID. A S 2 D . ) + m ( S ; ' D .  A S ; ' D . ) )  
I ' t = l  

where N = {D.}~=,. 

Thus, the set 

nk+nlk I 
= = v = l  i=n k 

is a Go set in Gin. 
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Suppose that S E Z ,  then 3k(q)--->oo such that 

~-'k,q, -2 1/2q/2 "~'" m(D. AS  D.,)~<' 
]=nklq) 

for l < v =< q, which implies, if L = {k(q)}~=l, that 

~', m(DAS-~D)~< oo for every D ~ N. 
jEK(L)  

N o w  

m(DAS-~'D) = I l o - l o  "S2'12dm 

=2(m(D)- f 1D1D'S2'dm) 

= 2(m(O)- fo '  e2"'ih(lo,lD).(s)dd's(S)) 

= 2fo' (1 - cos2rr2Js)h(lm lo)(s)dds(S) 

I0' = I1_e2,~,2 ', IZh(lo,lo)(s)d6-s(S) 

'(Io' )' = r e ( D )  Ii-e2"2'Slh(l°'l°)(s)dds(s) " 

Hence, for every s E Z there exists L C_ N, I L I = ~ so that for every D E N: 

f01 , ~ , ~  I 1 -  e 2''~" Ih(lo,lo)(s)dd'ds)<~ 

which implies that O's(e(TL))> 0 (in fact, it implies that os(e(TL)') = 0), which in 

turn entails the non-ergodicity of S x TL. Thus 

Z C G,, -E({TL :L C_N, IL I = oo}). 

To complete the proof of the main lemma, we show that Z is dense, and hence 

residual, in G,,. To do this we find an ergodic So E Z with sufficiently many 

conjugates in Z. 

From the condition nk+,> m~ + k it follows that there is an irrational 

E [0,1) with a = E~=l e./2" where e, = 0,1 for n => 1 and e~ = 0 for j = nk + v 

(0 =< v _--- mk + k, k => 1). This means that 

((2"~+~a)) <= 2,, _1~+~ (0 -< v =< mk). 
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(Here, ((x)) denotes the fractional part of x.) 

Let & (x) = ((x + a)). Then & E G,, 71 a e. 

Note first that if I C [0,1) is an interval, then m ( I A  S "I)<= 2(((ha))) where 

( x )  = x A (1 - x ) .  

Now, suppose that A = U , ~ , / j  where It are intervals. Then, since 

A A S ~"A C U jK=I /j /~ S ~ n/i, we have that m (A A S 2"A ) _-< 2K (((na))). 

For D E @ a dyadic set, let N(D) denote the minimal number of component 

intervals in the union forming D. Then 

m(D A S,,"D) <= 2N(D)(((na)))  and m(D A S-2"~+"D) <= 2N(D)/2 "~-"+k 

forO_- < v <-- mk, k >= l, 

whence 

n k + m k 

m(DAS22VD~ < 2 ~ .  1 
. . . .  = ~ -  1 2 k/2" 

Let o _ G m - { H E  (3= :H@ = 9}. We show that H I & I I E Z  for every H E  G ° . 

Choose H E G ° .  Let & = I-l-lS~II, then for n -_> 1 

m(D A S;"D) = m(D AII ~S;"HD) = m(IID A S2"IID). 

If D E ~ then so is l iD. Let q > 1 and let 

Nq = max N(IIDv). l~l,_--<q 

Choose k _-> q so that 

2 V~q __L_I <__~__1 

V 2 - 1 2  k/~ 2 v2" 

Then 

nk+mk ink+ink "~22"~ 
E m ( D ~  _~ , 1 1 /kS~D.)~= ~'~ m ( n D ~ / X s ; ~ n D ~  < - _ 2k--S<2q,2 

j = n  k j = n  k 

and Sn E Z. 
Since & is ergodic, it follows from the proof of the conjugacy lemma in [5] 

that {& : II E G°,,} is dense in G,,, whence Z is dense, and the main lemma is 

proven. [] 

THEOREM 1. If p(t) ~ 0 as t J, 0 then E(Ge(p)) is meagre in G,,. 
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PROOF. We begin by constructing nk, mk (~ N with n k + l  <~ nk + mk + k so that 

Ho(e(T,)) = 0 for every L C_ N, I L I = ~. To obtain this, given nk, choose m~ so 

large that 

p(1/2 "~+"~) _<- 1/2 "~+k and nk+l > nk +mk + k. 

Now 

j ~  q = 1 
jCK(t.) 

where Aq = {s E [0,1) :(((2"k+"s))) < 1 for 0_-< u = ink, k E L, k > q}. 

It suffices to show that Ho (Aq) = 0 for every q => 1. Note that 

Aq C B, = { s =.=,2 e . / 2 " ; e . = 0 , 1 a n d e , k + ,  . . . . .  e,~+,,~ for k G L, k >=q}. 

Now suppose that k G L and k => q. It is possible to cover B, with dyadic 

intervals of the form 

eft2 s, ~ eft2 s + 1/2"~+"~ 
k i=~ j = l  

where ej =0 , 1  for every j and e.k+l = e.~+2 . . . . .  e,~+,,k. There are 2 "~+~ 

intervals like this, each one having length 1/2 "k+"~ and so 

{ E o(llI): B, c_ U I, I I l_-  < 1/2 "k} inf __< p(1/2-~+'-~)2-~+1 _< 1/2 k. 

Hence (ILl =oo) Ho(Bq)=O for every q, and Ho(e(TL))=O for every L C_N, 

I L [ = = .  Thus 

{TL :LC_N, ILI=~o}C_G'(o) and E(Ge(p))C_E({TL:LC_NIL[=~}) 

which is meagre by the main lemma. []  

THEOREM 2. I[ C, $ as n T ~, ET=~C, = ~ ,  and e =(cl,c2,c3 .. . .  ), then 

E(G'(e))  is meagre. 

PROOF. Again, we use the main lemma, constructing nk,mk so that TL is 

c .-recurrent  for every L C N, I L ] = ~. 
Since E~=lc~ = ~  and c, ~ as n ~' we have that E~=~2"c2-=~. Given m, 

choose mk so large that 

nk + m  k 

Z 2iC2s >- 2"~ 
j = n k + l  

and then choose nk÷~ > nk +mk + k. 
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Now, suppose that L C_ N, [L [ = c¢ One of the results stated in §3 was that 
TL E G'({a~(n)}), where 

aL (n) = 2 IKtL)"°''°~"]l 

from which it will follow that TL is c,-recurrent if E : = , ( c . -  c.+OaL(n)= ~. 

A manipulation shows that this series diverges with 
mk +m k 

n ~ l  j = n k + l  

and this latter series diverges by the construction of nk and ink. Thus { TL : L C_ N, 
I L [ = ~} C_ G" (e) and hence 

E(G" (c)) C_ E({TL : L C_ N I L j = oo}) 
which is meagre by the main lemma. []  

§5. A residual multiplier property 

THEOREM 3. For every a(n)-->~, a(n)/n-->O, E(Ge({a(n)})) is residual. 

We need: 

LEMMA 4. Suppose that T E G e ({a (n)}) and S E Gm are such that S x T is not 

ergodic. Let a(n)---~,~O, then there exists A E ~, 0 < re(A) < 1 and K C_ N such 
that 

[Kn[1 ,  n]l /a(n)a(n)~oo and m ( A A S - " A )  >0. 
n E K  

PROOF. Since S x T is not ergodic there is a set ,4 E N @ N  such that 

0 < m @ m ( A ) < l  and l~(Sy, Tx)=l ,~(y,x)  for m x m - a . e .  ( y , x ) E X x X ,  

Define F:X--~L2(m) by F ( x ) ( y ) =  1A(y,x). Then F(Tx)= F(x) .S- ' .  

For f E L2(m) let A (f, e) = {x E X :11F(x) - f 112 < e }. It follows easily from 
the separability of L2(rn) that rn (A (F(x), e ) >  0 V e > 0 a.e. Thus there is an 

x o E X  such that m(A(F(xo),e))>O for every e > 0  and such that 0 <  

fxF(xo)dm < 1 (m-a.e. x0 E X will do). 
Now F(xo) = 1Ao where A o E ~ ,  0 <  m ( A o ) < l .  Suppose x C A(F(xo),e), 

n => 1 and T"x E A (F(xo), e), then 

- - n  1 

m(AoA S Ao~ = IlF(xo)- F(xo)" S" I~ 

< II F(xo) - F(x)112 + tl F(x) - F(xo). S n 112 

= IIF(xo)-  F(x)ll= + liE(x)" S " -  f(x0)ll~ 

= II F(xo) -  F(x)  I1~ + IIF(T"x)- F(xo)ll~ 

<2e .  
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Thus setting K(e) = {n => 1 : m(AoA S-"Ao) < e} we have that 

1A{F(Xo).~w)(X) 2 1A(F(~O),~W'(Tkx) =< I K(e )  n [1, n] [" 
k= l  

Integrating this inequality on X and noting that T E G'({a(n)}), we see that for 

every e > 0  there is a 8 ( e ) > 0  so that [K(e) n [1,n]l > 6(e)a(n) for e > 0  and 

n => 1. Choose tk ---~0 and nk < nk÷, 1' oo so that ~ / a ( n )  < ~(ek) for every n > nk. 

Setting 

K =  
k = l  

we obtain that 

[K n[1,nl[> X / ~ ) a ( n )  

0 [nk + 1, nk+l] K(ek), 

for n > 1  and m(AoAS "Ao) >0. [] 
n E K  

The proof of Lemma 4 is similar to that of lemma 4 in [1]. One can adapt that 

proof to show that if T E G'({a(n)}) has a ~-finite, infinite invariant measure, 

then K can be chosen with [K n [1,n][/a(n)--->oo. 

PROOF OF THEOREM 3. Suppose a(n)---->oo, a(n)/n--->O. Suppose that 

a(n)-->0, but al(n)= a(n)a(n)---->o< 
Let ~ = {D,}~=~ be the dyadic sets and set 

Z =  

q= l  n = q  LC[1,n] p . , v~ l  k E L  
ILl~--n-al(n)/q 

The set Z is clearly a G~ set in Gin. We prove Theorem 3 by showing that Z is 

dense and Z C_ E(Ge({a(n)})). 
Suppose S E Z, and for q > 1, let 

The condition S E Z entails the existence of a sequence n(q) '~ oo such that 

[Lq n [1,n(q)]] > n(q) -  a~(n(q))/q. Set 

L =  (_J [n(q)+l ,n(q+l)]nLq.  
q= l  

Since Lq+~ C_ Lq we have that for q => 1, [ L O [1, n (q)] [ >= n (q) - al(n (q))/q and 

hence 

lim[ L c n [1, n] [/a~(n) = O. 
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From the definition of L, we have that for any D,D'E  

m(D n S-"D) , m(D)m(D'). 
n E L  

Since @ generates ~, this last is true for any D, D'  E ~. On the other hand it is 

evident that any S with the above property is in Z. So S E Z if and only if there 

is a set L CN, such that 

iimlLCO[1,n]l/a,(n)=O and m ( A A S - " B )  ,m(A)m(B) 
n ~ L  

for every A, B E ~. 

Now, Z is patently dense in Gm as it contains all mixing transformations. 

Hence Z is residual. 

Now, suppose that S EZ,  TEG'({a(n)})  and S × T is not ergodic. By 

Lemma 4 there is an A,,E ~, 0 <  m(A0)< 1 and a K_C[1,n] with 

m(AoAS-"Ao) ~0 
n E K  

and IK n [1,n]l/a,(n)--~oo. 

whence m(Ao n S-"A,,)--~_~ re(A,,)) 
n E K  

But since S E Z there is an L and n(q)---~oo so that 

m(AoNS"A, , )  ,m(Ao)-" and ILO[1,n(q)][>n(q)-a,(n(q))/q.  
n ~ L  

Since m,(Ao)Z<m(Ao), we must have that for some N, K N [ N ,  oo]_C 

L c n IN, oo] whence 

IK n [1,n(q)]l < I Lc n [1,n(q)]l + N < at(n(q))/q + N, 

contradicting I K n [1, n] [/al(n)--, oo. Thus Z C_ E(G" ({a (n)})) and the latter set 

is therefore residual. [] 
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